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In collective pinning theory, the problem of two three-dimensional solids in contact is at its critical dimen-
sion. This implies that when the disordered forces acting between the two solids at the interface are relatively
strong, the force of static friction should be large, but at smaller values of these forces, the system switches
over to a regime of weak static friction. It is argued that this provides a mechanism for the reduction of friction
in boundary lubrication. Lubricant molecules reduce static friction by smoothing the roughness of the surface,
thus allowing the force pushing the surfaces together to be supported by more points of contact, which can
switch the interface from the strong- to weak-static-friction regime.
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I. INTRODUCTION

Experimental work done using the surface force apparatus
f1g shows that when liquid lubricants are squeezed between
two surfaces, at pressures comparable to those that occur at
the interface between two asperities in contact, the liquids
exhibit a shear response characteristic of solids. Such a result
has also been found in molecular dynamics simulationsf2g.
It is difficult to understand why such a film should shear
significantly more easily than the bare solid surfaces that
they are designed to lubricate. In this paper a possible
mechanism is proposed for how such films can reduce fric-
tion between two solid surfaces.

In order to provide some background for this problem, let
us first consider periodic surfaces in contact. Muser and Rob-
bins f3g, Muserf4g, and Lanconf5g have shown using simu-
lations that two perfect elastic crystalline solids in contact
will exhibit no static friction if they do not interact chemi-
cally, even when the solids are pressed together with forces
which are comparable to the forces at asperities in contact
when rough surfaces are pressed together. This remains true
until the force pressing the solids together exceeds a critical
value. At that point, the interface undergoes a transition
known as the Aubry transitionf6g to a state in which the
static friction becomes nonzero. In the Appendix, it is shown
that whereas for two incommensurate periodic solids in con-
tact distortions that occur as a result of the interactions of the
solids across the interface between them are limited to a very
thin region, for a disordered interface, the distortions are
typically spread over long distances from the interface. Thus,
whereas simulations on very thin solids used in Refs.f3,4g
are justified for incommensurate periodic solid interfaces,
they are not justified for disordered surfaces in contact. Sev-
eral of these authors have found that when there are mobile
molecules present at such an interface between periodic sur-
faces, there will always be static frictionf7,8g. We have also
studied both static and kinetic friction in the slow-sliding-
speed limit based on this model in several previous publica-
tions f9,10g. The treatment in Ref.f10g is based on the idea
that kinetic friction in the slow-sliding-speed limit results
from multistability of the interfacef11g. Most real interfaces,
however, are not perfectly flat, and hence they are only in

contact at relatively small regions located on top of asperities
which are in contact. It has been argued that this lack of
flatness of the surfaces on the micron scale will likely result
in static friction, even in the absence of mobile molecules,
but the friction coefficient will likely be very smallf9g.

The surfaces in contact at these asperities, however, are
not periodic, but are disordered. Muserf4g has shown in his
simulations that when the periodicity of two incommensurate
surfaces that were initially periodic is destroyed the interface
can switch from one not exhibiting static friction to one
which does. Collective pinning theoryf12–14g applied to the
geometry of the present problem predicts that as the forces
between the two disordered surfaces increase, the interface
will switch from a regime of small to one of large static
friction.

When surfaces are pushed together with large forces, the
forces between the surfaces are likely to be dominated by the
hard-core repulsions of the surface atoms. This results in an
increase of the components of the forces between atoms par-
allel to the interface on opposite surfaces as the force push-
ing the surfaces together is increased. Consider a pair of
micron-scale asperitiessone from each surfaced which are
being pushed together normal to the surface with a normal
force or loadF. If the area of contact of the interface be-
tween these asperities isA and a fractionc of the atoms at
this interface are in contact, the load per atom in contact is of
the order ofFsa2/cAd, wherea is the mean interatomic spac-
ing. Since the contacting atoms rarely lie one exactly above
the second, there will be a component of force along the
surface as well of the same order of magnitude, but in an
arbitrary direction. Strong pinning, in the present context,
means that all of these contacting atoms are displaceed by a
sufficient amount to minimize the potential due to the atoms
from the asperity from the second surface, at the expense of
the elastic forces holding the atoms in place. Then, if we
attempt to shear these two asperities relative to each other,
there will be a net force which opposes this shear motion,
which is of the order of the above load per contacting atom
multiplied by the number of atoms in contact, which givesF.
In contrast, in the weak-pinning limit, the elastic forces are
sufficiently strong to prevent these atoms from minimizing
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the potential resulting from the second asperity. Hence, when
we try to shear the interface, there will be a force opposing
the shear which is of the orderFsa2/cAd1/2 ssincecA/a2 is
the number of atoms in contactd because the frictional forces
which result from the hard-core repulsions of the atoms in
contact do not add together coherently because they point in
random directions. The net force of friction is a fluctuation in
the resultant force, and fluctuations are proportional to the
square root of the number of atoms in contact, which pro-
duce the force. Hence, it is given by the load per atom, given
above, multiplied by the square root of the number of atoms
in contact,cA/a2.

If A, instead of representing the contact area of a micron-
size asperity, represented the area of contact between two
perfectly flat macroscopic surfacessfor which A is macro-
scopicd, the force of static friction would be negligible. Since
the area of contact of two contacting asperities, however, is
not infinite, the static friction will never become zero but it
can still become very small, if the interface can be switched
from the strong- to weak-pinning limit. Likely types of
roughness on a surface of an asperity in contact with a sec-
ond asperity are regions at the surface where surface atoms
are missing and step edges which are pressed into contact
f15,16g. It is proposed in this article that the local forces at an
interface between two asperities in contact could be reduced
by filling in these holes in the surfaces with small molecules
and that this is a possible mechanism for lubrication. By
filling in these holes we spread the force pushing the asperi-
ties together over a larger area of contact, thus reducing the
force per unit area. This can switch the interface from the
strong-pinning regime, in which the static friction is large, to
the weak-pinning regime, in which the static friction is small
f12–14g. In the present article, this mechanism will be dis-
cussed in detail and another mechanism for lubrication will
be proposed in which relatively large molecules of a mono-
layer of lubricant can be compressed, if they lie on relatively
high regions on a surface, and thus spread the force pushing
the solids together over a larger area of contact. Although the
idea that increasing the amount of area of contact can reduce
the friction seems at first sight to contradict the picture pro-
vided by Greenwood and Williamsonf17g for explaining
Amonton’s law, in which it is assumed that the friction actu-
ally increases with increasing area of contact, this is in fact
not the case. In the present treatment, the friction does in fact
increase with increasing area of contact. When the area of
contact gets large enough to switch the interface to the weak-
pinning limit, however, the friction switches from being pro-
portional to the area of contact to being proportional to its
square root.

It is not being claimed that the mechanism for boundary
lubrication proposed here explains how all lubricants reduce
friction. All that is being proposed are a couple of mecha-
nisms for reduction of friction by model lubricant molecules
that are strongly attached to two surfaces which are in con-
tact.

Section II will review collective pinning theory, for two
three-dimensional elastic solids in contact. In Sec. III, a
mechanism for friction due to small molecules is discussed.
Section IV discusses a mechanism for lubrication due to
large molecules.

II. COLLECTIVE PINNING THEORY FOR SOLIDS
IN CONTACT AT A DISORDERED INTERFACE

For completeness the transition from strong to weak pin-
ning for two three-dimensional elastic solids in contact at a
disordered interface using scaling arguments, which was first
presented in Ref.f9g, will be discussed. We expect that quali-
tatively correct results for this problem can be obtained by
studying the simpler problem of a three-dimensional elastic
solid in contact with a rigid disordered substrate. This prob-
lem was also studied in Ref.f18g in the context of a macro-
scopic solid in contact with a substrate at randomly distrib-
uted asperities using perturbation theory. In the present work,
we will apply this model to a pair of asperities from two
surfaces in contact. Here the disorder occurs over the area of
contact of the two asperities. In collective pinning theory
f12–14g, there is competition between a disordered potential
and an elastic medium which interacts with this potential. In
the strong-pinning limit, the elastic solid is able to distort
enough to essentially minimize its interaction with the disor-
dered potential. In the weak-pinning limit, the solid has little
distortion over a volume, known as a Larkin domain, whose
linear size, the Larkin length, is determined by minimizing
the sum of the interaction with the disordered potential and
the elastic distortion energy, provided the system’s dimen-
sion is below the critical dimension for the problem. The
three-dimensional solid interacting with a two-dimensional
disordered substrate, however, is at its critical dimensionf9g.

Following a generalization of the discussion in Ref.f9g,
let us consider a homogeneous elastic solid interacting with a
two-dimensional rigid disordered substrate, located atz=0.
The energy of this system can be written asf19g

E =E d3rFKo
a,b

S ]ua

]xb
D2
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]ua

]xa
D2

− V„r + usr d…dszdG ,
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wherea and b run over the componentsx, y, andz, uasr d
denotes theath component of the displacement field at the
point r in the elastic medium,K and K8 are the elastic
moduli si.e., the Lamé coefficientsf19gd, and Vsr d denotes
the substrate potential per unit area. We look for an approxi-
mate solution of the formua=uasx/L ,y/L ,z/L8d, whereu
varies by an amount of the order of the range of a potential
well of the substrate potential whenx and y vary over a
distance ofL or z varies over a distance of orderL8. These
are the Larkin lengths along and perpendicular to the surface.
We substitute this expression forua in Eq. s1d and approxi-
mate the integral of the first two terms in the integrand of Eq.
s1d over a single Larkin domain by the product of the aver-
age over a Larkin domain of first two terms in the integrand
of Eq. s1d and the volume of a Larkin domain,L2L8, and then
multiply by the number of domains,A/L2, whereA is the
area of the interface. Minimizing with respect toL8, we ob-
tain

L8 = LSG8

G
D1/2

, s2d

where G=oa,b=x,yKks]ua /]xb8d2l+K8oa=x,yks]ua /]xa8d2l, and
G8=Kks]uz/]z8d2l+K8oaks]ua /]z8d2l, where sx8 ,y8 ,z8d
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=sx/ L , y/L ,z/L8d, andk¯l signifies an average over a Lar-
kin domain. Since the derivatives ofu are all of the order of
atomic distances,L8<L. Assuming thatVsr d is completely
random andusr d varies by a negligible amount asr runs
over a domain of volumeL2L8, the integral ofVsr d over this
domain is of the formV0c

1/2L /a, whereV0 is the root-mean-
squaresrmsd value of the potential of interaction between a
surface atom and the substrate andc is the fraction of the
surface atoms which are in contact with the substrate. In
arriving at this result we assumed that the variation ofusr d,
when r varies over a distance small compared toL, is neg-
ligibly small compared to the length scales on the substrate.
Since the substrate is random, the integral overVsr d is pro-
portional to the square root of the number of surface atoms in
contact with the substrate, which is of the order ofcsL /ad2

wherea is a mean atomic spacing or potential well size. Let
the force per unit apparent area pushing the surfaces together
be denoted byP. Since the number of surface atoms in con-
tact with atoms from the second surface is of the order of
cA/a2, the mean force between two atoms in contact from
each of the two surfaces is given byPA divided by this
quantity orPa2/c. Hence, sinceVsr d varies on a length scale
a, V0< Pa3/c. Then substituting Eq.s2d in Eq. s1d, we obtain

E = f2sGG8d1/2 − Pa2/c1/2gA/L s3d

for the energy, which is minimized for infiniteL if
2sGG8d1/2. Pa2/c1/2 and for L=0 swhich in practice means
that L is as small as the smallest length scale in the problem
rather than zerod if 2sGG8d1/2, Pa2/c1/2. Thus, it is clear that
as c decreases, the interface can switch from weak pinning
sif it was already in the weak-pinning regimed to strong pin-
ning. In the latter regime, by the arguments given in the last
paragraph, the surfaces will be pinned together; i.e., there
will be static friction. Because the interface area between two
asperities in contact is only of micron size, there will be a
transition from low to high, rather than from zero to nonzero
static frictionsas would occur for an infinite interfaced. In the
next two sections ways will be proposed to increase the ef-
fective value ofc si.e., increase the number of points of
contact of the surfacesd by using proposed model lubricant
molecules and, by doing so, reducing the friction.

This problem can also be considered using perturbation
theory in the weak-pinning limitf18g. To do this, following
Ref. f18g, one calculatesusr d which results from the random
forces found from Vsr d and from it calculateskuusRd
−us0du2l using the standard expression for the elasticity
Green’s functionf19g. Here, k¯l signifies an average over
the random substrate forces.R is considered to be equal to
the Larkin length when this quantity is comparable to the
square of the range of a substrate potential well, as this rep-
resents the distance over which the surface of the solid can
be considered as rigid from the point of view of the random
substrate potential. Following arguments similar to those in
Ref. f18g, we find a Larkin length that is an exponential
function of the ratio of Young’s modulus divided byV0,
which can easily be quite large compared to any reasonable
size solid interface when this ratio is reasonably large, as it is
in the weak-pinning regime. Thus, even though the varia-

tional method that I used above gives an infinite Larkin
length in the weak-pinning limit, whereas the perturbation
theory method of Ref.f18g gives a finite Larkin length, since
the Larkin length found in Ref.f18g is extremely largesi.e.,
an exponential function of a fairly large numberd in the
weak-pinning limit, the two methods can be considered to
give qualitatively the same result.

III. LUBRICATION BY SMALL OR NARROW CHAIN
LUBRICANT MOLECULES

Asperities on the surface of a solid can occur on many
length scales, and in fact, for self-affine surfaces, the asperi-
ties look the same when viewed on all scales, until we get
down to atomic length scalesf16g. At this scale, the rough-
ness must reflect the atomic arrangement of the solid. At the
area of contact of two asperities, there is likely to be atomic-
scale roughness, consisting of regions along the surface at
which a small section of the top layer of atoms is missing.
This type of roughness is illustrated by a sketch shown in
Fig. 1sad. There is also likely to be atomic-level roughness
due to steps on asperities which are distorted as they are
pressed into contact. This is illustrated in Figs. 1sbd and 1scd.
Figure 1sbd is a sketch of two asperities before they are
placed in contact. The step structure illustrated in this figure
corresponds to what is likely to occur if a crystal plane of
each of the two surfaces in contact is parallel to the surface.
The step structure shown is what one must have in order for
there to be hills and valleyssi.e., asperitiesd on the surfaces.
Figure 1sbd illustrates what is found in scanning tunneling
microscopesSTMd studies of surfacesf15g. As is illustrated
in Fig. 1scd, if the asperity sides are in contact, the interface
which must be sheared in order to initiate sliding between
the asperities also has high regions at which the asperity
surfaces are in contact separated by holes, whose depths are
comparable to atomic spacings. Figure 1scd was obtained
from Fig. 1sbd by distorting the two asperities uniformly as
they are placed in contact. This is qualitatively what one
expects to occur if we assume that the asperity distortions are
described by continuum elastic theoryf19g. If the surface is
not parallel to a crystal axis, there will also be steps on the
peak of an asperity similar to the steps on the side of an
asperity that are illustrated in Figs. 1sbd and 1scd. The mean
upward slope of the asperity-asperity interface shown in Fig.
1scd will not contribute to static friction because in practice it
is highly unlikely that pairs of asperities in contact will be
lined up so perfectly that they will be forced to slide directly
over each other. Even if they did, it was shown by Caroli and
Nozieref11g that a random distribution of the relatively short
and fat asperities that occur on most surfaces will not exhibit
static friction sif this atomic-level step structure is not con-
sideredd. Rather, the important factor which determines
whether or not there will be static friction is whether or not
this interface is pinned by the roughness due to the steps. For
the type of roughness illustrated in Fig. 1scd, the contact area
will be a small fraction of the total asperity-asperity inter-
face, making it likely that this interface will be in the strong-
pinning limit. sWhat I am saying is that in the absence of
such atomic-level roughness, the upward slopes of the asper-
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ity interfaces will not lead to static frictions, as proved by the
arguments given in Ref.f11g.d

Consider the type of atomic-level roughness illustrated in
Fig. 1sad. Now let us imagine placing two of these surfaces
in contact and pressing them together with a load per unit
apparent area of the interfaceP. If the load is sufficiently
high, we may safely assume that the force between a pair of
surface atoms from the two surfaces which are in contact is
dominated by the hard-core interaction. Then, a good esti-
mate of the magnitude of the mean force acting between a
pair of surface atoms from the two surfaces that are in con-
tact is P/n, wheren is the number density per unit area of
surface atoms which are in contact. This is an estimate of the
component of force normal to the interface, but since such
atom pairs are rarely lined up so that one is exactly on top of
the other, there will be components of force of comparable
magnitude along the interface as well, in random directions,

as discussed in the Introduction. Let us now imagine adding
atoms of the same material to each of the outer layers until
they each form a complete monolayer. Our model is then
identical to the model studied in Refs.f3–5g. In this model it
was reported in these references that even for loads per unit
area as high as a GPa, there was no static friction between
the surfaces. As the concentration of surface atoms is re-
duced from a complete monolayer on each surface by remov-
ing atoms, there will certainly be a concentration at which
the interface switches over from the weak-pinning limit, in
which the elastic energy dominates over the substrate poten-
tial swhich in our case represents the second surfaced, to the
strong-pinning regime, in which the opposite is true.

Let us now place molecules of a lubricant on these sur-
faces, which have the property that they attach themselves
strongly to the surfaces. This is the property that lubricant
molecules must have in order to be good lubricantsf16g.
Then, let us assume that the attractive force between a lubri-
cant molecule and a surface atom is much greater than the
attraction between two lubricant molecules and the tempera-
ture. These can be either single atoms or chains. If they are
chains, we require that they be very flexible and consider
how the individual monomers position themselves on the
interface. Simulations done for two flat surfaces in contact
f2g show that under GPa pressures such a lubricant will get
squeezed out until, at the highest pressures, we are left with
a bilayer. We will now illustrate this proposed mechanism for
lubrication for the model for atomic level roughness illus-
trated in Fig. 1sad. In our case, where the surface is not
smooth, we expect there to be a bilayer coating the steps
si.e., on the places on the outer layer at which there are
surface atomsd. The regions at which there are no top sub-
monolayer atoms present will also get filled in with lubricant
molecules. The reason for this is that as the surfaces are
squeezed together, some of the lubricant molecules that are
driven from the steps will be pushed into these regions.
Some of them become trapped in the one atomic layer deep
“valleys” in the outer surfaces of the solids. We can see from
Fig. 1 that the second layer of lubricant molecules that we
propose to be present inside the valleys can easily be trapped
there by lubricant molecules which are adsorbed on the tops
of islands of top surface atomsssince they are assumed to be
strongly attached to themd. These molecules partially support
the load, and hence, since the load is now supported over a
larger area of contact, the system might be switched to the
weak pinning regime, resulting in a significant reduction of
friction.

I have performed a Monte Carlo calculation to demon-
strate that the lubricant molecules when compressed between
two surfaces will get squeezed into atomic-depth holes in the
surfaces. A lubricant, consisting of 245 spherically symmet-
ric molecules interacting with a Lennard-Jones potential, is
placed between the two surfaces, and the surfaces are then
moved together so as to compress the lubricant down to a
bilayer. The lubricant molecules interact with each of the
surfaces with a Steele potentialf20g, which has the form

Vsr d = V0szd + V1szdo
G

eiG·r ,

whereG is a reciprocal-lattice vector for the surface. This
potential, however, possesses a defect which must be dealt

FIG. 1. Rough sketches are given illustrating the types of
atomic-level disorder considered in this article.sad The top sketch
illustrates disorder due to an incomplete top atomic layer on an
asperity.sThere will, of course be step structure on the sides of the
asperity as well, but it is not shown here because I wish to illustrate
roughness due to an incomplete top layer of the asperity.d sbd The
middle sketch illustrates the stepped structure of the sides of two
asperities before they are placed in contact, andscd the lower figure
illustrates what the two asperities insbd are likely to look like after
they are placed in contact. Note that this figure is only meant to
illustrate the concept of having atomic-level roughness of the as-
perities resulting from the step structure, and the steps are much
larger compared to the asperity size than would be the case for real
asperities.
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with. Namely, when a molecule is sufficiently strongly
pressed into one of the surfacessbecause of the high pres-
suresd the amplitude of the corrugation termV1szd can domi-
nate overV0szd. Since the second term can be negative and
since bothV1szd andV0szd diverge asz approaches zero, the
total potentialVsr d can become unstable. This defect of the
Steele potential is compensated for by makingV1szd level off
before it exceedsV0szd. The energy parametere in the
Lennard-Jones interaction −4efss / rd6−ss / rd12g between the
lubricant molecules was chosen to be a tenth of the energy
parameteregs in the Steele potentialf20g. The potential
minima are taken to lie on a triangular lattice of lattice spac-
ing a=2.88 Å. The bottom surface contains a hexagonally
shaped hole of semimajor and semiminor axes 7.6 and 6.6 Å,
respectively. The surfaces are circular with radii equal to
6aÎs3d /2 wherea is taken to be 2.885 Å. IfVssx,y,zd rep-
resents the potential due to this surface for values ofx andy
outside the holeswhere thez axis is normal to the interfaced,
Vssx,y,z+z0d is taken to be the potential inside the hole.
Here z0 is taken to be equalas2/3d1/2, the depth of a hole,
resulting from removing atoms in the surface layer of a
hexagonal-close-packedshcpd lattice with its c axis normal
to the surface or a face-centered-cubic lattice with itss111d
surface parallel to the surface. The calculation is started with
the lubricant molecules placed in an hcp lattice five atomic
layers thick with lattice constanta between the two surfaces
and centered over the hole. The initial separation of the sur-
faces is 15 Å which is just enough for the initial crystal of
lubricant molecules to fit without being compressed. The sur-
face is kept at that separation for 23106 iterations. The sepa-
ration is then reduced by 0.5310−7 Å for every Monte Carlo
iteration until the separation reaches 9.84 Å. The interface
pressure at this separation is 3.2731011 dyn/cm2, which is
larger than the pressure at the area of contact of two asperi-
ties used in Ref.f9g. We stop reducing the separation at this
point. For smaller separations the total potential energy of
the lubricant becomes large and positive, indicating that the
film is becoming highly compressed. Results of these calcu-
lations forkBT=20e swherekB is Boltzmann’s constant andT
is the absolute temperatured are shown in Fig. 2. The radius
of the shaded spheres used to represent a lubricant molecule
was chosen to be approximately equal to the radius of a
lubricant molecule used in the simulation inb andc but not
in a sfor clarityd. Lines were drawn to show the approximate
locations of the surfaces and the hole in the lower surface. As
can be seen, the film gets compressed into a bilayer outside
of the hole and the hole gets filled with a high concentration
of lubricant molecules one monolayer thick, which could
support load over the region in which the hole occurs. The
interface between the two layers of lubricant will be an in-
terface which will shear quite easily compared to an interface
between unlubricated surfaces, as the only interaction acting
across this interface is the interaction between pairs of lubri-
cant molecules, which was assumed to be much weaker than
the interaction between the two bare surfaces.

In contrast to the valleys in the outer surfaces assumed to
occur at the interface between two asperities, lubricant mol-
ecules are not expected to get trapped in the space at the
sides of the micron-scale asperities, because the depth of

such regions is much too great to allow the attractive force
between surface atoms and lubricant molecules to reach the
lubricant molecules in most of this region. Thus, most of the
molecules in this region are free to flow through the space
around the sides of the asperities. As a result, most of the
lubricant found here remains liquid. Only molecules which
are trapped at the interface between a pair of asperities which
are in contact will be under high enough pressure to exhibit
the solidlike properties found in Ref.f1g. The mechanism for
boundary lubrication suggested here should be applicable at
pressures that occur at the contact area between two asperi-
ties, which can reduce the lubricant concentration down to a
monolayer or less coating each surface. The model for
atomic-level roughness illustrated in Figs. 1sbd and 1scd
should also result in finite-atomic-size depth holes in the
surfaces of two asperities in contact because of the irregular
shape of the steplike terraces resulting in kinks in the steps
f15g making up the slopes of the sides of the asperities on the
surfaces. Lubricant molecules will likely get trapped be-
tween pairs of kinks, in much the same way as they do in
holes in the top layerfas illustrated in Fig. 1sadg. Even if the
layer of lubricant molecules which fills in the holes in the
region of contact of two asperities is slightly higher or lower
than the walls of the hole, the mechanism will still work
because the high loads that occur at the interface between
two asperities are sufficient to equalize these heights by com-
pressing either the lubricant or surface atoms. For example,
for a Lennard-Jones energy parameter of about 20 K, they
can be compressed by at least 12%. This is easily shown by
setting the repulsive part of the force due to the Lennard-
Jones interaction equal to the force per surface atom due to
the load supported by the pair of asperities in contact. The
amount of compression could even be larger than this be-
cause until the compression occurs, the load is supported
over a smaller area.

The idea of lubricant molecules filling in valleys in the
top layer of each surface and thus making the top surface
more smooth at first sight seems like the familiar idea of
reducing friction by making the surfaces smoother, but here
we have provided a mechanism for how such “smoothing”
results in low friction. The idea that by doing so the interface
switches from the strong-pinning regime, in which there is
large static friction, to the weak-pinning regime, in which
there is little static friction, provides a mechanism for how
such “smoothing” of the surface with lubricant molecules
can lead to low friction.

IV. LUBRICATION BY LARGE MOLECULES

In the last section, it was argued that a thin layer of mol-
ecules of size comparable to the depth of the holes in the
surfaces in contact of the two solids could reduce the static
friction by spreading the force pushing the surfaces together
over a larger number of randomly placed points of contact
sby filling in the holes in the surfaced. This can switch the
interface from the strong- to weak-pinning limit, resulting in
a large reduction in the friction. Here, I will propose another
mechanism for reducing the friction. Let us coat the surface
with a thin film of a more readily compressible material con-
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sisting of molecules which are noticeably larger than atomic
dimensions. For example, let us consider a complete mono-
layer of elastic globular molecules of radius noticeably larger
than an atomic spacingffor example, octamethylcyclotetra-
siloxanesOMCTSd f21gg coating the surfaces. The surface of
the solid has the type of atomic-level roughness discussed
earlier and illustrated in Fig. 1—namely, holes in the surface
of atomic-distance depths. The outer surface on the other
side of the coating will clearly reflect this roughness, al-
though some of it will get smoothed out because of the large
ratio of the lubricant molecule’s size and the length scale of
the surface roughness. This is illustrated schematically in
Fig. 3. In fact, this will already significantly increase the area
of contact compared to the bare surface, because the bare
surface has a very small concentration of its surface atoms in
contactsnamely, those at those parts of the steps that were in
contact before the surfaces were coatedd. When the outer

surface gets pressed against a second solid, which we will
model here for simplicity by a flat substrate, the lubricant
molecules on the high parts of the outer surface will get
compressed. If they get compressed enough, parts of the
outer surface which were not initially in contact will now
come in contact. This will spread the force pressing the sol-
ids together over more points of contact, which could switch
the system from the strong-pinning to the weak-pinning re-
gime, resulting in a large reduction of the static friction.

Those lubricant molecules which are in contact are the
ones located on high points on the surfaces. We will refer to
tops of these higher-lubricant molecules, which are in con-
tact, as miniasperities. The interface potential between two
miniasperities varies on atomic-length scales, as does the in-
terface between two micron-scale asperities. Since the mini-
asperities are much smaller, however, they are much stiffer,
and hence, it is possible for appropriate parameters for them

FIG. 2. Insad, there is a side view of the distribution of molecules between the two surfaces. Insbd, the molecules in a slice of width equal
to 1 Å centered aroundz=−3.8 Å are shown, which are clearly located inside the hole. Inscd, the molecules in a slice of width equal to 1 Å
centered aroundz=−1.5 Å are shown, which are clearly located in one of the layers outside of the hole. Both thex andy axes insad, sbd,
and scd are in units of Å.
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to be sufficiently stiff so that they cannot sink into their
interface potential minimum. The condition for this to occur
will be considered later in this section. In order for the inter-
face to be in the weak-pinning regime it must be in this
regime on several length scales. First of all, the elastic forces
that hold the atoms at the area of contact of two miniasperi-
ties in place must be sufficiently strong so that each atom on
one miniasperity does not drop into the minimum of the
potential well provided by the other miniasperity. Second,
the individual miniasperities must be sufficiently stiff so that
they do not drop into a minimum of the net interface poten-
tial si.e., the sum of the potentials provided by the atoms of
the second miniasperity with which it is in contactd. Third, if
both of these conditions are met, the film as a whole must be
in the weak-pinning regime, and fourth, the bulk solid must
be sufficiently stiff so as to be in the weak-pinning regime.

In order to determine whether the atoms at the interface
between two miniasperities in contact are in the weak-
pinning regime, we can apply the methods of the last section
to a single miniasperity. We will for simplicity replace the
miniasperity with which it is in contact by a substrate, con-
sistent with the approach that we used in Sec. II. If the lu-
bricant molecule contains enough atoms so that the con-
tinuum approximation is a good first approximation to the
problem, this can be examined using the methods of the pre-
vious section. If the molecules are sufficiently large com-
pared to atomic dimensions, we can apply the arguments
used in Sec. II for an asperity to a miniasperity. The argu-
ment is as follows: For a load per unit apparent areaP, the
total load pushing the surfaces together isPA, whereA is the
total surface area. The number of miniasperities in contact is
,c8A/,2, wherec8 is the fraction of miniasperities which are
in contact and, is the radius of a lubricant molecule. Then
the net load per contacting miniasperity is the quotient of

these two quantities orP,2/c8. Hence, the force per minias-
perity atom issP,2/c8dsa2/Acd, whereAc is the mean area of
contact of a miniasperity with the substrate. Then, since the
potential per atom varies over a distance of the order ofa,
the root mean potential per atom is of the order of the prod-
uct of the force per atom anda. The integral of the potential
Vsr d over a Larkin domain of lengthL is the product of the
root-mean-square potential per atom and the square root of
the number of atoms in a Larkin domain,L2/a2, which gives
sP,2/c8dsa2/AcdL. Multiplying by the number of Larkin do-
mains in a miniasperity,Ac/L2, we get sP,2/c8dsa2/Acd
3sAc/Ld, which replaces the second term in Eq.s3d. The
quantityA in the first term gets replaced byAc, since we are
applying the methods of Sec. II to a miniasperity, whose area
of contact with the substrate is denoted byAc rather thanA.
Then the condition for weak pinning becomes

sP,2/c8dsa2/Acd , 2sGG8d1/2 < K̄a2, s4d

whereK̄ is a quantity of the order ofK or K8 in value. The
far right-hand side of this expression follows from the ex-
pressions forG andG8 under Eq.s2d and from the fact thatu
varies by an amount of ordera when sx8 ,y8 ,z8d vary by an
amount of order unity, which implies that the derivatives of
the components ofu are of ordera. From Eq.s4d we get the
following condition for weak pinning at the miniasperity in-
terface:

P , c8K̄sAc/,
2d. s5d

This will by itself reduce the friction by spreading the load
that for the bare surfaces was supported by a few atoms that
stuck out from each surface by a surface consisting of several
atoms belonging to a lubricant molecule.

Next, we must examine whether each miniasperity will be
in the weak-pinning limit. This will be true if under the
above mean force parallel to the surface, the miniasperity is
not able to sink into the minimum of its interface potential.
The mean load on a pair of miniasperites in contact is of the
order ofPsA/c8Nmd, whereNm is the number of miniasperi-
ties along the interface between two asperities. Since the
interface potential varies over a distance of ordera f9g, the
mean interface potential for a miniasperityV08
< PsA/c8Nmda. The condition for the miniasperity being in
the weak-pinning regime is then

V08/a ! ,8,2KsDu/,82d, s6d

where Du is the displacement of a miniasperity along the
interface and is of the order ofa and ,8 is the height of a
miniasperity, which is the amount that a molecule stuck to a
higher than average location on the bare surface is higher
than a molecule stuck to the lowest point on the surface.
SinceA/Nm<,2, V08 /a< P,2/c8. Substituting in Eq.s6d, we
obtain

P ! c8sa/,8dK, s7d

as the condition for the miniasperity to not sink into its net
interface potential minimum. By our definition of a minias-
perity, ,8<a. Also, Ac is of the order of but less than,2.

FIG. 3. The arrangement of larger lubricant molecules discussed
in Sec. IV is illustrated schematically for the type of roughness
shown in Figs. 1sad and 1scd.
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Thus, if Eq.s5d is satisfied, so will Eq.s7d be satisfied. When
these conditions are satisfied, the miniasperity can be treated
as a rigid area of contact. It is then necessary to study
whether the monolayer lubricant film as a whole is in the
weak-pinning regime.

Since the three-dimensional solid is now coated with a
monolayer lubricant film which is likely to be more flexible
than the material that the solid is made from, we must exam-
ine whether the coated solid is still able to exhibit a weak-
pinning regime, characterized by a Larkin length which is as
large as the interface. This would certainly not be the case
for a two-dimensional solid film which is not attached to a
stiffer three-dimensional solidf14g. We will for the moment
assume the solid to be completely rigidsas it is being as-
sumed to be rigid in comparison to the filmd. Then, the en-
ergy of the film is given by

E =E
film

d3rFK1o
a,b
KS ]ua

]xb
D2L + K18KSo

a

]ua

]xa
D2L

− V„r + usr d…dszdG , s8d

whereK1 andK18 are the elastic constants of the film. Inside
the film, we choose the position dependence ofu to be
uasx8 ,y8 ,z8d, wheresx8 ,y8 ,z8d=sx/L ,y/L ,z/Lfd, whereLf is
the thickness of the film. Here,Lf represents the height of the
lubricant molecules, which are assumed to be strongly at-
tached to the solid. Substituting this assumed expression for
ua in Eq. s8d, we get

E = AFK1 o
a,b=x,y

KS ]ua

]xb8
D2LsLf/L

2d + K1o
a
KS ]ua

]z8
D2LLf

−1

+ K18LfK o
a=x,y

S ]ua

]xa8
L−1 +

]uz

]z8
Lf

−1D2L − PasA/cNmd1/2/LG .

s9d

In deriving Eq. s9d, we let V08 be the rms interaction of a
single miniasperity with the substrate. Then the interaction
energy of the substrate with a single Larkin domain is ap-
proximately equal toV08sc8Nm/Ad1/2L. The rms substrate po-
tential energy of a single atom on the moleculeV08 is found
by setting the mean force between a miniasperity and the
substratesV08 /ad fwe divide bya because the distance scale
of Vsr d is of the order ofag equal to the force pushing the
surface and substrate together per miniasperity in contact,
PA/ sc8Nmd. As in Sec. II we are assuming hard-core interac-
tion between individual atoms and the substrate, and there-
fore the latter force is comparable to the component parallel
to the substrate of the force acting on a single miniasperity.
This givesV08<sPA/c8Nmda, which when substituted in the
above expression for the interaction energy of a Larkin do-
main with the substrate gives the last term in Eq.s9d. Differ-
entiating Eq.s9d with respect toL, we find a solution for the
value ofL that minimizesE sby setting this derivative with
respect toL equal to zerod if

PasA/c8Nmd1/2 . 2K18K ]uz

]z8
o

a=x,y

]ua

]xa8
L

or P of the order ofc81/2sa/,dK. The resulting Larkin length
is given by

L =
FK1oa,b=x,yKS ]ua

]xb8
D2L + K18Koa,b=x,y S ]ua

]xa8
D2LGLf

PasA/c8Nmd1/2 − 2K18oa,b=x,yK ]ua

]xa8

]uz

]z8
L .

s10d

We see from Eq.s10d that if the first term in the denominator
is of the same order but larger than the second term, a rela-
tively small increase inc could make the Larkin length infi-
nite and thus put the interface in the weak-pinning limit.
Once the above inequality is not satisfied,E is minimized for
infinite L. This transition from finite to infinite Larkin length
for a thin film attached to a rigid solid could be tested by
simulations done on relatively thin films, in contrast to a
three-dimensional elastic solid interacting with a disordered
substrate, which cannotsas discussed in the Appendixd.

The miniasperities can be modeled with a Greenwood-
Williamson-like modelf17g, in which there is a distribution
of heights of the miniasperities, consisting of the tops of
lubricant molecules attached to high points on the solid sur-
face, which get compressed under load. In order for this
mechanism to work, the height variations on the surface
must be small enough so that by distorting by a relatively
small percentage compared with the height of the lubricant
molecules attached to high points on the surfaces, a signifi-
cant additional fraction of the surfaces is put in contact. To
treat the miniasperities using a Greenwood-Williamson
model, we must choose a probability distribution for the
heights of the miniasperities which is more appropriate for
this situation than the distributions used in Ref.f17g. In the
present case the height distribution arises from lubricant
molecules placed at high and low points on the surface lo-
cated on various points along the steps illustrated in Fig. 1.
Thus, the highest miniasperities are likely to have a height of
ordera. For the type of disorder illustrated in Fig. 1sad, there
will be two possible heights for the miniasperities, one for
those resulting from lubricant molecules attached to the tops
of the steps and one attached to a point not on a step. Hence,
we should choose a probability distribution functionfszd,
where z represents the height of a miniasperity,susing the
same notation as Ref.f17gd such thatfszd becomes zero for
z greater thana. Thus the height distribution for miniasperi-
ties is qualitatively different from that used in Ref.f17g to
describe the micron-scale height variations of a surface. Let
us for simplicity choose a distribution function

fszd = sN1/Nmddszd + sN2/Nmddsz− ad + sN3/Nmda−1fszd,

s11d

where fszd=1 and is nonzero only for 0,z,a, which satis-
fies the above requirements for the form offszd. Here,N1

andN2 are the numbers of lubricant molecules attached be-
tween steps and on steps, respectively, for the kind of rough-
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ness depicted in Fig. 1sad and N3 are the number of mol-
ecules attached to a region with the roughness depicted in
Fig. 1scd, with the conditionNm=N1+N2+N3. We should be
able to get qualitatively correct results by applying the con-
tinuum elasticity theory result for the force per unit area,P,
pushing the surfaces togethersi.e., treating a lubricant mol-
ecule as an elastic sphere, as was done in Ref.f17g to a first
approximationd. Then, following Ref.f17g,

c8 =E
d

`

fszddz= sN1/Nmddd,0 + sN2/Nmd + sN3/NmdSa − d

a
D ,

s12d

where d is the distance of the substrate from a reference
distance from the surface. The load per miniasperity, which
using the standard Hertz expressionf19g swhich should be
accurate enough if the molecule is sufficiently larged is of the
order ofP,82/c8, is given by

P,82/c8 = CNE
d

`

fszdsz− dd3/2dz

= CFN1a
3/2dd,0 + N2sa − dd3/2 + s2/5dN3

sa − dd5/2

a
G ,

s13d

whereC is a constant equal tos4/3dRc
1/2K8, whereRc is the

radius of curvature of a miniasperity andK8 is the compres-
sional elastic constant in Eq.s1d. Then, if P
. s4/3dc8K8fsN2/Nmd+s2/5dsN3/Nmdgsa/Rcd3/2, d becomes
zero, signifying that the miniasperities all get completely
compressed, which means that all of the lubricant molecules
will be in contact. WhenP reaches this valuec8 switches
from sN2+N3d /Nm to 1. This increase in the value ofc8 could
switch the interface from the strong- to weak-pinning regime
if the condition for strong pinning given above Eq.s10d was
initially satisfied. Since for a miniasperityRc<,, we see that
if the lubricant molecule’s radius, is sufficiently large com-
pared toa, this critical value ofP could be smaller than the
critical values given in Eqs.s5d and s7d, for the individual
interface atoms and miniasperties to be in the weak-pinning
limit. In such a case, the film as a whole could be put in the
weak-pinning limit by completely compressing all of the
miniasperities, while interface atoms and the miniasperities
are still in the weak-pinning regime.

In principle, the same arguments could be applied to films
of self-assembled chain molecules. In this case, the minias-
perities are made up of several molecules which are attached
to a part of the surface at which its height is constant or
nearly constant. These molecules might develop gauche de-
fects, rather than distorting elastically, under high pressure,
which could modify the picture presented here somewhat.

The discussion here differs from that in Sec. II in that
whereas in Sec. II, we assumed that the solid is sufficiently
rigid so thatc8 is a constant; here we assume thatc8 in-
creases as the film is compressed. This implies that even if
the lubricated surface would have been in the strong-pinning
limit for the value ofc8 for zero load, as the film is com-
pressedc8 increases, resulting in the inequality above Eq.

s10d no longer being satisfied. At that point, there will no
longer exist a finite value ofL which minimizes the energy
si.e., a finite Larkin lengthd. Instead, Eq.s8d is minimized
whenL approaches infinity.

Although in this discussion we have neglected the elastic
distortion of the bulk solid and only considered the distortion
of the lubricating film, a calculation which includes the dis-
tortion of the bulk solid gave the same result, provided the
film was more flexible than the bulk solid.

It has been argued in this section that it is possible for the
right choice of parameters for relatively large molecules to
reduce friction by three possible mechanisms operating on
three length scales. First, if the molecules are sufficiently
stiff, they can spread the load over more atoms in contact,
resulting in these atoms being put in a weak-pinning regime
si.e., a regime in which the force exerted on these atoms by
atoms from the second surface is not able to overcome the
elasticity and hence the interface forces on these atoms are in
random directionsd. Second, the miniasperities can be in a
weak-pinning regime, in which the interface forces on them
are in random directions. Third, the lubricant film as a whole
can be put in the weak-pinning regime, and fourth, the bulk
solid could be put in the weak-pinning regime.

V. CONCLUSION

It is proposed in this article that collective pinning theory
provides a possible mechanism for boundary lubrication.
Two possible ways for accomplishing this are discussed. One
method is due to a thin layer of small molecules that attach
themselves strongly to two surfaces making up an interface
between two micron-size asperities in contact, filling in
atomic-distance depth holes expected to occur on such sur-
faces. This results in the force pushing the two surfaces to-
gether being supported over a larger area of contact, which
switches the interface from the strong-pinningsi.e., high-
frictiond to weak-pinning si.e., low-frictiond regimes. We
then propose another mechanism using larger lubricant mol-
ecules which interact strongly with the surfaces, forming a
bilayer coating of the interfacesi.e., each surface is coated
with a monolayer of lubricantd. The resulting coated surfaces
reflect the atomic-level roughness of the bare surfaces, but it
is argued that compression of the lubricant molecules will
smooth out this roughness, allowing the force pressing the
two surfaces together to be distributed over a larger area of
contact, which may switch the interface from the strong-
pinning si.e., high-frictiond to the weak-pinningsi.e., low-
frictiond regime. This “smoothing” occurs on three length
scales. If the mechanism proposed in Sec. III for small mol-
ecule lubricants switches the interface to the weak-pinning
limit, the friction can be reduced by a factorscAc/a2d−1/2,
since the forces acting on the atoms at a single asperity in-
terface will now act in random directions, leading to a reduc-
tion by this factor, which is the inverse of the square root of
the mean number of atoms in contact with atoms from the
second surface. If the second mechanism results put the in-
terface into the weak-pinning limit, the friction is reduced by
a factorscNmd−1/2. It is not being claimed that the mechanism
for boundary lubrication proposed here explains how all lu-
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bricants reduce friction. All that is being proposed are a
couple of mechanisms for reduction of friction by model
lubricant molecules that are strongly attached to two surfaces
which are in contact.

While it might be difficult at this stage to test experimen-
tally whether or not the mechanisms for reduction of friction
explain boundary lubrication for lubricated surfaces in actual
engineering applications, it should be possible to test the
phenomenon of collective pinning theory reducing friction
using the surface force apparatusf22,23g. In order to accom-
plish this, it would be necessary to produce surfaces in the
surface force apparatus with the kind of atomic level rough-
ness discussed in this manuscript and coat them with lubri-
cant molecules having the properties discussed in this article.
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APPENDIX: COMPARISON OF THE DISPLACEMENT
FIELD FOR PERIODIC AND DISORDERED

SURFACES

Referencesf3,4g studied two thinsa few atomic layers
thickd crystalline solids in contact using molecular dynamics.
We have seen in this paper, however, that for disordered
surfaces, the distortions of the solids, due to their interaction
at the interface, can extend well into the bulk of the solids. In
fact, in Sec. II, it was found that in the weak-pinning regime,
the distortion extends a distance of the order of the linear
dimensions of the solid. We will show here that, in contrast,
for periodic solids in contact, the distortions extend only a
distance of the order of the periodicity of the surface. We
will simplify the problem here by considering, in place of
two elastic solids, an elastic solid interacting with a rigid
periodic potential, which is incommensurate with it. Our re-
sults are not expected to be qualitatively different from what
we would get if we considered two elastic solids in contact.
Then, the displacement of the atom at siteRj in the solid due
to a periodic potential acting on one of its surfaces is given
by

uj = o
,

GsRj − R,d · fsR,d, sA1d

where the sum overR, runs over the surface at which the
substrate forcefsR,d, representing the second solid at the
interface, acts. The tensorGsRj −R,d represents the elasticity
Green’s function for the elastic solid. It is given by

GsRj − R,d = N−1o
k,a

eik·sRj−R,dêk,aêk,a

mva
2skd

, sA2d

wherem is the atomic mass andvaskd is the frequency of the
ath phonon of wave vectork, êk,a is a unit vector in the
polarization direction of theath phonon mode of wave vec-
tor k f24g, andN denotes the number of atoms in the crystal.
For large distances from the surface we can approximatev2

by its small-wave-vector approximationc2k2, wherec is the
sound velocity. Let us consider

fsR,d = o
s

iQsv0e
iQs·R,,

wherev0, a constant, andQs, respectively, represent the am-
plitude and thesth of the smallest reciprocal lattice vectors
of the periodic substrate potential. TheQ8s will be taken to
have the same magnitudeQ. We will take R, to lie in the
plane of the substrate. Then converting the sum overk in Eq.
sA2d to an integral and assuming thatêk,a is not strongly
dependent onk in the small-k limit, we obtain

uj ~ o
s
E dkz

eikzzeiQs·r i

kz
2 + Q2 ~ e−Qzo

s

eiQs·r i, sA3d

wherer i is the projection ofr along the surface. Thus we see
that the displacement resulting from the substrate potential
only penetrates a distanceQ−1 into the solid, which implies
that simulations done on periodic solids like those done in
Refs.f3,4g are adequate to capture the correct physics of the
problem.

The reason that studies using thin solids are not expected
to be adequate for a disordered substrate can easily be un-
derstood using a simple argument. At long distances from the
substrate, wherev2 in the denominator of Eq.sA2d can be
approximated byc2k2, the elasticity Green’s function of Eq.
sA2d is approximately proportional touRj −R,u−1. Therefore,
each component of Eq.sA1d can be thought of as an electro-
static potential due to a surface charge density represented by
a component of the substrate forcef. For a random substrate,
the sum of each component offsR,d overR, over a region of
any size on the surface will give a nonzero valuesi.e., there
will be a net force on that region due to fluctuationsd. In our
electrostatic analogy, in which each component of the sub-
strate force represents a surface charge density, this implies
that each region has a net “charge.” Thus the net “potential”
contribution from that regionfobtained by performing the
summation over, in Eq. sA1d over that regiong is propor-
tional to the inverse distance from that region. Since the
potential in our electrostatic analogy represents the distortion
u due to the substrate forces acting on that region, we see
that it is essential to consider thick solids when we have
disordered interfaces.
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